¿Está realmente curvado el espacio-tiempo? ¿No es concebible que el espacio-tiempo sea realmente plano, pero que los relojes y las reglas con los que lo medimos y que consideramos perfectos son, en realidad, elásticos? ¿No podrían incluso los relojes más perfectos atrasarse o adelantarse, y las reglas más perfectas contraerse o dilatarse, cuando las llevamos de un punto a otro o cambiamos sus orientaciones? ¿No harían tales distorsiones de nuestros relojes y reglas que un espacio-tiempo realmente plano pareciese estar curvado? La respuesta es sí.

Centrémosnos en el ejemplo concreto de la medida de circunferencias y radios en torno a un agujero negro sin rotación. Supongamos un diagrama de inserción para el espacio curvado del agujero. El espacio está curvado en este diagrama porque hemos acordado definir las distancias como si nuestras reglas no fueran elásticas, como si siempre mantuvieran sus longitudes constantes independientemente de dónde las coloquemos y de cómo las orientemos. Las reglas muestran que el horizonte del agujero tiene una circunferencia de 100 kilómetros. Alrededor del agujero se ha dibujado un círculo de dos veces esta circunferencia, es decir, 200 kilómetros, y la distancia radial desde el horizonte a dicho círculo se ha medido con una regla perfecta; el resultado es 37 kilómetros. Si el espacio fuera plano, la distancia radial debería ser el radio del círculo exterior, 200/2p kilómetros, menos el radio del horizonte, 100/2p kilómetros; es decir, tendría que ser de 200/2 p — 100/2 p = 16 kilómetros (aproximadamente). Para acomodar la distancia radial mucho mayor, de un tamaño de 37 kilómetros, la superficie debe tener la forma curvada de tipo pabellón de trompeta mostrada en el diagrama.

0x01 graphic

 

Si el espacio es realmente plano en torno al agujero negro pero nuestras reglas perfectas son elásticas y, por ello, nos confunden al hacernos creer que el espacio está curvado, entonces la geometría real del espacio debe ser como la que se muestra a la derecha de la figura y la verdadera distancia entre el horizonte y el círculo debe ser 16 kilómetros, como exigen las leyes de Euclides de la geometría plana. Sin embargo, la relatividad general insiste en que nuestras reglas perfectas no miden esta verdadera distancia.

Tómese una regla y extiéndase a lo largo de una circunferencia en torno al agujero justo fuera del horizonte (trazo negro grueso curvado con marcas de regla en la parte derecha de la figura. Cuando la regla se orienta de este modo a lo largo de la circunferencia, mide correctamente la distancia verdadera. Córtese la regla a 37 kilómetros de longitud: ahora abarca el 37 por 100 de la longitud en torno al agujero. A continuación gírese la regla de modo que quede orientada radialmente. A medida que la regla gira, la relatividad general requiere que se contraiga. Cuando apunta en dirección radial, su longitud verdadera debe haberse contraído hasta 16 kilómetros, de modo que llegará exactamente desde el horizonte hasta el círculo externo. Sin embargo, la escala que figura en su superficie contraída debe afirmar que su longitud es aún de 37 kilómetros y, por lo tanto, que la distancia entre el horizonte y el círculo es de 37 kilómetros.

Las personas como Einstein que no son conscientes de la naturaleza elástica de la regla, y por ello confían en su medida imprecisa, concluyen que el espacio está curvado. Sin embargo, quienes sean conscientes de su elasticidad, saben que la regla se ha contraído y que el espacio es realmente plano. ¿Qué podría hacer que la regla se contraiga cuando cambia su orientación? La gravedad, por supuesto. En el espacio plano de la mitad derecha de la figura existe un campo gravitatorio que controla los tamaños de las partículas elementales, los núcleos atómicos, átomos, moléculas, etc., y las obliga a todas a contraerse cuando se extienden en dirección radial. La magnitud de la contracción es grande cerca de un agujero negro, y más pequeña lejos de él, debido a que el campo gravitatorio que controla la contracción está generado por el agujero, y su influencia disminuye con la distancia.

El campo gravitatorio que controla la contracción tiene otros efectos. En el momento en que un fotón o cualquier otra partícula pasa junto al agujero, este campo lo atrae y desvía su trayectoria. La trayectoria se curva alrededor del agujero; está curvada, tal como se mide en la auténtica geometría espacio-temporal plana del agujero. Sin embargo, las personas como Einstein, que se toman en serio las medidas de sus relojes y de sus reglas elásticas, consideran que el fotón se mueve a lo largo de una línea recta a través del espacio-tiempo curvo.

¿Cuál es la verdad real y auténtica? ¿Es el espacio-tiempo realmente plano, como sugieren los párrafos anteriores, o está realmente curvado? Esta es una pregunta sin interés porque no tiene consecuencias físicas. Ambos puntos de vista, espacio-tiempo curvo y espacio-tiempo plano, dan exactamente las mismas predicciones para cualquier medida realizada con reglas y relojes perfectos, y también las mismas predicciones para cualquier medida realizada con cualquier tipo de aparato físico. Por ejemplo, ambos puntos de vista coinciden en que la distancia radial entre el horizonte y el círculo en la figura medida por una regla perfecta, es de 37 kilómetros. Discrepan respecto a si dicha distancia medida es la distancia «real», pero tal discrepancia es una cuestión de filosofía, no de física. Puesto que los dos puntos de vista coinciden en los resultados de todos los experimentos, ambos son físicamente equivalentes. Qué punto de vista nos dice la «verdad real» es irrelevante para los experimentos; es una cuestión a debatir por los filósofos, no por los físicos. Además, los físicos pueden, y así lo hacen, utilizar los dos puntos de vista de forma intercambiable cuando tratan de deducir las predicciones de la relatividad general.

Los procesos mentales con los que trabaja un físico teórico están bellamente descritos por el concepto de paradigma de Thomas Kuhn. Kuhn, que recibió su título de doctor en física por Harvard en 1949 y luego se convirtió en un eminente historiador y filósofo de la ciencia, introdujo el concepto de paradigma en su libro de 1962 La estructura de las revoluciones científicas, uno de los libros más inspirados que se han escrito.

Un paradigma es un conjunto completo de herramientas que utiliza una comunidad de científicos en su investigación sobre un tema, así como para comunicar los resultados de su investigación a los demás. El punto de vista del espacio-tiempo curvo de la relatividad general es un paradigma; el punto de vista del espacio-tiempo plano es otro. Cada uno de estos paradigmas incluye tres elementos básicos: un conjunto de leyes de la física formuladas matemáticamente; un conjunto de imágenes (imágenes mentales, imágenes verbales, dibujos sobre un papel) que nos dan ideas sobre las leyes y nos ayudan a comunicarnos con los demás; y un conjunto de ejemplos, esto es, cálculos anteriores y problemas resueltos, bien en los libros de texto o en los artículos científicos publicados, que la comunidad de expertos en relatividad coincide en que están hechos correctamente y son interesantes, y que utilizamos como patrones para nuestros cálculos futuros.

El paradigma del espacio-tiempo curvo se basa en tres conjuntos de leyes formuladas matemáticamente: la ecuación de campo de Einstein, que describe cómo la materia genera la curvatura del espacio-tiempo; las leyes que nos dicen que las reglas perfectas y los relojes perfectos miden las longitudes y los tiempos del espacio-tiempo curvo de Einstein; y las leyes que nos dicen cómo se mueven la materia y los campos a través del espacio-tiempo curvo, por ejemplo, que los cuerpos que se mueven libremente viajan en líneas rectas (geodésicas).

El paradigma del espacio-tiempo plano también se basa en tres conjuntos de leyes: una ley que describe cómo la materia, en el espacio-tiempo plano, genera el campo gravitatorio; leyes que describen cómo dicho campo controla la contracción de reglas perfectas y la dilatación de las marchas de relojes perfectos; y leyes que describen cómo el campo gravitatorio controla también los movimientos de partículas y campos a través del espacio-tiempo plano.

Las imágenes en el paradigma del espacio-tiempo curvo incluyen los diagramas de inserción y las descripciones verbales de la curvatura del espacio-tiempo alrededor de los agujeros negros (por ejemplo, el «remolino en forma de tornado en el espacio que rodea a un agujero negro giratorio»). Las imágenes en el paradigma del espacio-tiempo plano incluyen la mitad derecha de la figura, con la regla que se contrae cuando se gira desde una orientación tangente a la circunferencia hasta una orientación radial, y la descripción verbal de «un campo gravitatorio que controla la contracción de las reglas».

Los ejemplos del paradigma del espacio-tiempo curvo incluyen el cálculo, que se encuentra en la mayoría de los libros de texto de relatividad, mediante el cual se deriva la solución de Schwarzschild a la ecuación de campo de Einstein, y los cálculos mediantes los cuales Israel, Carter, Hawking y otros dedujeron que un agujero negro no tiene «pelo». Los ejemplos del espacio-tiempo plano incluyen los cálculos de los libros de texto acerca de cómo cambia la masa de un agujero negro u otro cuerpo cuando captura ondas gravitatorias, y los cálculos de Clifford Will, Thibault Damour y otros acerca de cómo generan ondas gravitatorias (ondas de campo productor de contracción) las estrellas de neutrones que orbitan una en torno a otra.

Cada elemento de un paradigma —sus leyes, sus imágenes y sus ejemplos— es crucial para los procesos mentales de los investigadores. Las imágenes (mentales y verbales tanto como las dibujadas sobre el papel) actúan como una brújula. Hacen intuir cómo se comporta probablemente el Universo; se las manipula, junto con garabatos matemáticos, en búsqueda de nuevas intuiciones interesantes. Si se encuentran, a partir de las imágenes y los garabatos, una idea digna de seguirse, se trata entonces de verificarla o refutarla mediante cuidadosos cálculos matemáticos basados en las leyes de la física matemáticamente formuladas del paradigma. Se estructuran los cálculos detallados de acuerdo con los ejemplos del paradigma. Ellos dicen qué nivel de precisión de cálculo es probablemente necesario para tener resultados fiables. (Si la precisión es demasiado pobre, los resultados pueden ser falsos; si la precisión es demasiado alta, los cálculos pueden consumir innecesariamente un tiempo valioso.) Los ejemplos dicen también qué tipo de manipulaciones matemáticas es probable que lleven al a través del amasijo de símbolos matemáticos. Las imágenes guían también los cálculos; ayudan a encontrar atajos y evitar los callejones sin salida. Si los cálculos verifican o al menos hacen plausible la nueva idea, entonces se comunica a los expertos en relatividad mediante una mezcla de imágenes y cálculos.

Las leyes de la física del paradigma del espacio-tiempo plano pueden derivarse, matemáticamente, a partir de las leyes del paradigma del espacio-tiempo curvo, y recíprocamente. Esto significa que los dos conjuntos de leyes son diferentes representaciones matemáticas de los mismos fenómenos físicos, en el mismo sentido, en cierto modo, en que 0,001 y 1/1.000 son diferentes representaciones matemáticas del mismo número. Sin embargo, las fórmulas matemáticas para las leyes tienen un aspecto muy diferente en las dos representaciones, y las imágenes y ejemplos que acompañan los dos conjunto de leyes tienen un aspecto muy diferente.

A modo de ejemplo, en el paradigma del espacio-tiempo curvo la imagen verbal de la ecuación de campo de Einstein es el enunciado de que «la masa genera la curvatura del espacio-tiempo». Cuando se traduce al lenguaje del paradigma del espacio-tiempo plano, esta ecuación de campo se describe mediante la imagen verbal «la masa genera el campo gravitatorio que gobierna la contracción de las reglas y la dilatación de la marcha de los relojes». Aunque las dos versiones de la ecuación de campo de Einstein son matemáticamente equivalentes, sus imágenes verbales difieren profundamente.

En la investigación en relatividad resulta extraordinariamente útil conocer ambos paradigmas. Algunos problemas se resuelven más fácil y rápidamente utilizando el paradigma del espacio-tiempo curvo; otros, utilizando el espacio-tiempo plano. Los problemas de agujeros negros (por ejemplo, el descubrimiento de que un agujero negro no tiene "pelo") son más tratables mediante técnicas del espacio-tiempo curvo; los problemas de ondas gravitatorias (por ejemplo, el cálculo de las ondas producidas cuando dos estrellas de neutrones orbitan una en torno a la otra) son más tratables mediante las técnicas del espacio-tiempo plano. A medida que maduran, los físicos teóricos van ganando poco a poco en intuición acerca de qué paradigma será mejor para cada situación, y aprenden a conmutar sus mentes de un paradigma a otro cuando es necesario. Pueden considerar el espacio-tiempo curvado el domingo, cuando piensan sobre agujeros negros, y plano el lunes, cuando piensan sobre ondas gravitatorias.

Puesto que las leyes que subyacen a los dos paradigmas son matemáticamente equivalentes, podemos estar seguros de que, cuando se analiza la misma situación física utilizando ambos paradigmas, las predicciones para los resultados de los experimentos serán idénticamente iguales. Por ello somos libres para utilizar el paradigma que mejor nos convenga en cada situación dada.

Esta libertad implica poder. Por esto es por lo que los físicos no estaban contentos con el paradigma del espacio-tiempo curvo de Einstein, y han desarrollado el paradigma del espacio-tiempo plano como un suplemento al mismo. La descripción de la gravedad de Newton es también otro paradigma. Considera el espacio y el tiempo como absolutos, y la gravedad como una fuerza que actúa instantáneamente entre dos cuerpos.

El paradigma newtoniano de la gravedad no es, por supuesto, equivalente al paradigma del espacio-tiempo curvo de Einstein; los dos dan predicciones diferentes para los resultados de experimentos. Thomas Kuhn utiliza la expresión revolución científica para describir la lucha intelectual mediante la cual Einstein inventó su paradigma y convenció a sus colegas de que daba una descripción más aproximadamente correcta de la gravedad que el paradigma newtoniano. La invención de los físicos del paradigma del espacio-tiempo plano no fue una revolución científica en este sentido kuhniano, porque el paradigma del espacio-tiempo plano y el paradigma del espacio-tiempo curvo dan exactamente las mismas predicciones.

Cuando la gravedad es débil, las predicciones del paradigma newtoniano y del paradigma del espacio-tiempo curvo de Einstein son casi idénticas, y en consecuencia los dos paradigmas son muy aproximadamente equivalentes matemáticamente. Por esto es por lo que, al estudiar la gravedad en el Sistema Solar, los físicos a menudo van y vienen con impunidad entre el paradigma newtoniano, el paradigma del espacio-tiempo curvo, y también el paradigma del espacio-tiempo plano, utilizando en cualquier instante cualquiera de ellos que venga a su imaginación o parezca más intuitivo.

A veces, las personas recién llegadas a un campo de investigación tienen menos prejuicios que los veteranos. Esto fue lo que sucedió en los años setenta, cuando nuevas personas tuvieron ideas que llevaron a un nuevo paradigma para los agujeros negros, el paradigma de la membrana.

En 1971 Richard Hanni, un estudiante de licenciatura en la Universidad de Princeton, junto con Remo Ruffini, repararon en que el horizonte de un agujero negro puede comportarse de una forma en cierto modo similar a una esfera eléctricamente conductora. Para entender este comportamiento peculiar, recordemos que una pequeña bola de metal cargada positivamente transporta un campo eléctrico que repele a los protones y atrae a los electrones. El campo eléctrico de la bola puede describirse mediante líneas de campo, análogas a las de un campo magnético. Las líneas de campo eléctrico apuntan en la dirección de la fuerza que ejerce el campo sobre un protón (y en dirección opuesta a la fuerza que ejerce sobre un electrón), y la densidad de líneas de campo es proporcional a la intensidad de la fuerza. Si la bola está sola en el espacio-tiempo plano, sus líneas de campo eléctrico apuntan hacia afuera en dirección radial (véase la figura de más abajo). Correspondientemente, la fuerza eléctrica sobre un protón apunta radialmente hacia afuera de la bola y, puesto que la densidad de líneas de campo decrece de forma inversamente proporcional al cuadrado de la distancia a la bola, la fuerza eléctrica sobre un protón también decrece de forma inversamente proporcional al cuadrado de la distancia.

Acerquemos ahora la bola a una esfera metálica. La superficie metálica de la esfera está constituida por electrones que pueden moverse libremente sobre la esfera, y de iones positivamente cargados que no pueden hacerlo. El campo eléctrico de la bola atrae a cierto número de electrones de la esfera hacia la vecindad de la bola, dejando un exceso de iones en cualquier otra región de la esfera; en otras palabras, polariza la esfera.

0x01 graphic

En 1971 Hanni y Ruffini, e independientemente Robert Wald de la Universidad de Princeton y Jeff Cohen del Institute for Advanced Study de Princeton, calcularon las formas de las líneas de campo eléctrico producidas por una bola cargada cerca del horizonte de un agujero negro sin rotación. Sus cálculos, basados en el paradigma estándar del espacio-tiempo curvo, revelaron que la curvatura del espacio-tiempo distorsiona las líneas de campo del modo mostrado en la figura siguiente. Hanni y Ruffini, notando la similaridad con las líneas de campo de la figura anterior, sugirieron que podemos considerar el horizonte de un agujero negro de la misma forma que consideramos una esfera metálica; es decir, podemos considerar el horizonte como si fuera una fina membrana compuesta de partículas cargadas positiva y negativamente, una membrana similar a la superficie metálica de la esfera. Normalmente hay el mismo número de partículas positivas y negativas en cualquier parte de la membrana, es decir, no hay carga neta en ninguna región de la membrana. Sin embargo, cuando la bola se acerca al horizonte, un exceso de partículas negativas se mueve hacia la región situada debajo de la bola, dejando un exceso de partículas positivas en las otras partes de la membrana; de este modo, la membrana del horizonte queda polarizada; y el conjunto total de líneas de campo producido por las cargas de la bola y las cargas del horizonte toma la forma del diagrama.

La relatividad general insiste en que, si uno cae en un agujero negro, no encontrará nada en el horizonte excepto curvatura espacio-temporal. Uno no verá membrana ni partículas cargadas. Por ello, la descripción de Hanni-Ruffini de por qué las líneas de campo eléctrico de la bola están curvadas no podía tener ninguna base en la realidad. Era pura ficción. La causa de la curvatura de las líneas de campo era la curvatura espacio-temporal y nada más: las líneas de campo se curvan hacia el horizonte en el diagrama solamente debido a que la gravedad de marea las atrae, y no porque estén siendo atraídas hacia alguna carga de polarización en el horizonte. El horizonte no puede tener ninguna carga de polarización semejante... pero esta afirmación era equivocada.

Cinco años después, Roger Blandford y un estudiante licenciado, Román Znajek, en la Universidad de Cambridge descubrieron que los campos magnéticos pueden extraer la energía de rotación de un agujero negro y utilizarla para suministrar potencia a los chorros (el llamado proceso Blanriford-Znajek). Blandford y Znajek encontraron también, mediante cálculos en el espacio-tiempo curvo, que, a medida que se extrae la energía, fluyen corrientes eléctricas hacia el horizonte cerca de los polos del agujero (en forma de partículas cargadas positivamente que caen hacia adentro), y salen corrientes del horizonte cerca del ecuador (en forma de partículas cargadas negativamente que caen hacia adentro). Era como si el agujero negro formara parte de un circuito eléctrico.

Los cálculos mostraban, además, que el agujero se comportaba como si hubiera un generador de voltaje en el circuito. Este generador de voltaje del agujero negro impulsaba la corriente hacia fuera desde el ecuador del horizonte, luego ésta subía por las líneas de campo magnético a una gran distancia del agujero, continuaba a través del plasma (gas eléctricamente conductor caliente) hasta otras líneas de campo próximas al eje de giro del agujero, y luego descendía por dichas líneas de campo y entraba en el horizonte. Las líneas de campo magnético eran los cables de un circuito eléctrico, el plasma era la carga que extrae energía del circuito, y el agujero giratorio era la fuente de energía.

0x01 graphic

Desde este punto de vista, es la energía transportada por el circuito la que acelera el plasma para formar chorros. Desde otro punto de vista, son las líneas de campo magnético en rotación, dando vueltas una y otra vez, las que aceleran el plasma. Los dos puntos de vista son simplemente formas diferentes de mirar lo mismo. En ambos casos, la energía procede en última instancia de la rotación del agujero. El que uno considere que la energía es transportada por el circuito o que es transportada por las líneas de campo giratorias es una cuestión de gusto.

La descripción de circuito eléctrico, aunque se basa en las leyes de la física del espacio-tiempo curvado estándar, era totalmente inesperada, y el flujo de corriente a través del agujero negro —hacia adentro cerca de los polos y hacia afuera cerca del ecuador— parecía muy peculiar. Durante 1977 y 1978, Znajek e, independientemente, Thibault Daniour (también un estudiante licenciado, aunque en París y no en Cambridge) se interrogaron sobre esta peculiaridad. Mientras trataban de entenderla, tradujeron independientemente las ecuaciones del espacio-tiempo curvo, que describen el agujero giratorio y su plasma y campo magnético, a una forma poco familiar con una interpretación gráfica intrigante: cuando llega al horizonte, la corriente no entra en el agujero. En lugar de ello, se fija al horizonte, donde es conducida por el tipo de cargas del horizonte imaginadas anteriormente por Hanni y Ruffini. Esta corriente de horizonte fluye desde el polo al ecuador, desde donde sale hacia las líneas de campo magnético. Además, Znajek y Damour descubrieron que las leyes que gobiernan la carga y corriente del horizonte son versiones elegantes de las leyes de la electricidad y el magnetismo en el espacio-tiempo plano: son la ley de Gauss, la ley de Ampére, la ley de Ohm y la ley de la conservación de la carga.

Znajek y Damour no afirmaban que un ser que cayese en el agujero negro encontraría un horizonte tipo membrana con cargas y corrientes eléctricas. Lo que afirmaban, más bien, era que si uno desea imaginar cómo se comportan la electricidad, el magnetismo y los plasmas fuera de un agujero negro, es útil considerar el horizonte como una membrana con cargas y corrientes.

Znajek y Damour, y Hanni y Ruffini antes que ellos, habían descubierto las bases de un nuevo paradigma para los agujeros negros. El paradigma era fascinante. Las leyes de la física de los agujeros negros, escritas en este paradigma de la membrana, son completamente equivalentes a las leyes correspondientes del paradigma del espacio-tiempo curvo, siempre y cuando uno restrinja su atención al exterior del agujero. En consecuencia, los dos paradigmas dan exactamente las mismas predicciones para los resultados de todos los experimentos u observaciones que cualquiera pudiera hacer fuera de un agujero negro, incluyendo todas las observaciones astronómicas hechas desde la Tierra.

Cuando se piensa sobre astronomía y astrofísica, es útil tener a mano ambos paradigmas, el de la membrana y el del espacio-tiempo curvo, y hacer saltos mentales tipo Escher entre uno y otro. El paradigma del espacio-tiempo curvo, con sus horizontes hechos de espacio-tiempo vacío curvo, puede ser útil el domingo, cuando se piensa en las pulsaciones de los agujeros negros. El paradigma de la membrana, con horizontes hechos de membranas eléctricamente cargadas, puede ser útil el lunes, cuando se piensa en la producción de chorros de un agujero negro. Y puesto que está garantizado que las predicciones de los dos paradigmas son las mismas, se pueden utilizar según el día aquella que más convenga a las necesidades.

0x01 graphic

No sucede así en el interior de un agujero negro. Cualquier ser que caiga en un agujero descubrirá que el horizonte no es una membrana dotada de carga, y que en el interior del agujero el paradigma de la membrana pierde completamente su poder. Sin embargo, los seres en caída hacia un agujero negro pagan un precio muy alto por descubrir esto: no pueden publicar su descubrimiento en las revistas científicas del Universo exterior.

                                            © 1996 Javier de Lucas