PILDORAS CIENTIFICAS

 

¿Qué ocurriría si una fuerza irresistible se enfrentase con un cuerpo inamovible?

He aquí un rompecabezas clásico sobre el que han debido verter su palabrería millones y millones de argumentos. Pero antes de dar una solución pongamos algunas cosas en claro. El juego de explorar el Universo mediante técnicas racionales hay que jugarlo, como todos los juegos, de acuerdo con ciertas reglas. Si dos personas quieren conversar inteligentemente tienen que ponerse de acuerdo acerca del significado de los símbolos que utilizan (palabras o cualesquiera otros) y sus comentarios han de tener sentido en función de ese significado.

Todas las preguntas que no tengan sentido en función de las definiciones convenidas se las echa fuera. No hay respuesta porque la pregunta no ha debido ser formulada. Supongamos por ejemplo que pregunto: «¿Cuánto pesa la justicia?» (quizá esté pensando en la estatua de la justicia con la balanza en la mano). Pero el peso es una propiedad de la masa, y sólo tienen masa las cosas materiales. (De hecho, la definición más simple de materia es «aquello que tiene masa».) La justicia no es una cosa material, sino una abstracción. Por definición, la masa no es una de sus propiedades, y preguntar por el peso de la justicia es formular una pregunta sin sentido. No existe respuesta.

Por otro lado, mediante una serie de manipulaciones algebraicas muy simples es posible demostrar que 1 = 2. Lo malo es que en el curso de la demostración hay que dividir por cero. A fin de evitar una igualdad tan inconveniente (por no hablar de otras muchas demostraciones que destruirían la utilidad de las matemáticas), los matemáticos han decidido excluir la división por cero en cualquier operación matemática. Así pues, la pregunta «¿cuánto vale la fracción 2/0?» viola las reglas del juego y carece de sentido. No precisa de respuesta.

Ahora ya estamos listos para vérnoslas con esa fuerza irresistible y ese cuerpo inamovible.

Una «fuerza irresistible» es, por definición (si queremos que las palabras tengan significado), una fuerza que no puede ser resistida; una fuerza que moverá o destruirá cualquier cuerpo que encuentre, por grande que sea, sin debilitarse ni desviarse perceptiblemente. En un Universo que contiene una fuerza irresistible no puede haber ningún cuerpo inamovible, pues acabamos de definir esa fuerza irresistible como una fuerza capaz de mover cualquier cosa.

Un «cuerpo inamovible» es, por definición (si queremos que las palabras tengan algún significado), un cuerpo que no puede ser movido; un cuerpo que absorberá cualquier fuerza que encuentre, por muy grande que sea, sin cambiar ni sufrir daños perceptibles en el encuentro. En un Universo que contiene un cuerpo inamovible no puede haber ninguna fuerza irresistible porque acabamos de definir ese cuerpo inamovible como un cuerpo capaz de resistir cualquier fuerza.

Si formulamos una pregunta que implique la existencia simultánea de una fuerza irresistible y de un cuerpo inamovible, estamos violando las  definiciones implicadas por las frases mismas. Las reglas del juego de la razón no lo permiten. Así pues, la pregunta «¿Qué ocurriría si una fuerza irresistible se enfrentase con un cuerpo inamovible?» carece de sentido y no precisa de respuesta. El lector quizá se pregunte si es posible construir las definiciones de modo que no quepa formular preguntas incontestables. La respuesta es que no, como ya expliqué en una píldora anterior.

¿Qué son los números primos y por qué les interesan a los matemáticos?

Un número primo es un número que no puede expresarse como producto de dos números distintos de sí mismo y uno. El 15 = 3 x 5, con lo cual 15 no es un número primo; 12 = 6 x 2 = 4 x 3, con lo cual 12 tampoco es un número primo. En cambio 13 = 13 x 1 y no es el producto de ningún otro par de números, por lo cual 13 es un número primo. Hay números de los que no hay manera de decir a simple vista si son primos o no. Hay ciertos tipos, en cambio, de los cuales se puede decir inmediatamente que no son primos. Cualquier número, por largo que sea, que termine en 2, 4, 5, 6, 8 ó 0 o cuyos dígitos sumen un número divisible por 3, no es primo. Sin embargo, un número que acabe en 1, 3, 7 ó 9 y cuyos dígitos sumen un número no divisible por 3, puede que sea primo -pero puede que no-. No hay ninguna fórmula que nos lo diga. Hay que ensayar y ver si se puede escribir como producto de dos números más pequeños.

Una manera de encontrar números primos consiste en escribir todos los números del 2 al más alto posible, por ejemplo el 10.000. El primero es 2, que es primo. Lo dejamos donde está y recorremos toda la lista tachando uno de cada dos números, con lo cual eliminamos todos los números divisibles por dos, que no son primos. De los que quedan, el número más pequeño después del 2 es el 3. Este es el siguiente primo. Dejándolo donde está, tachamos a partir de él uno de cada tres números, deshaciéndonos así de todos los divisibles por 3. El siguiente número sin tachar es el 5, por lo cual tachamos uno de cada cinco números a partir de él. El siguiente es el 7, uno de cada siete; luego el 11, uno de cada once; luego el 13…, etc.

Podría pensarse que después de tachar y tachar números llegará un momento en que todos los números mayores que uno dado estarán tachados y que por tanto no quedará ningún número primo superior a un cierto número primo máximo. En realidad no es así. Por mucho que subamos en los millones y billones, siempre quedan números primos que han escapado a todas las tachaduras.

Ya en el año 300 a. C. demostró el matemático griego Euclides que por mucho que subamos siempre tiene que haber números primos superiores a esos. Tomemos los seis primeros números primos y multipliquémoslos: 2 x 3 x 5 x 7 x 11 x 13 = 30.030. Sumando 1 obtenemos 30.031. Este número no es divisible por 2, 3, 5, 7, 11 ni 13, puesto que al dividir siempre dará un resto de 1. Si 30.031 no se puede dividir por ningún número excepto él mismo, es que es primo. Si se puede, entonces los números de los cuales es producto tienen que ser superiores a 13. De hecho 30.031 = 59 x 509. Esto mismo lo podemos hacer para el primer centenar de números primos, para el primer billón o para cualquier número. Si calculamos el producto y sumamos 1, el número final o bien es un número primo o bien es el producto de números primos mayores que los que hemos incluido en la lista. Por mucho que subamos siempre habrá números primos aún mayores, con lo cual el número de números primos es infinito.

De cuando en cuando aparecen parejas de números impares consecutivos, ambos primos: 5, 7; 11, 13; 17, 19; 29, 31; 41, 43. Tales parejas de primos aparecen por doquier hasta donde los matemáticos han podido comprobar. ¿Es infinito el número de tales parejas de primos? Nadie lo sabe. Los matemáticos creen que sí, pero nunca lo han podido probar. Por eso están interesados en los números primos. Los números primos presentan problemas aparentemente inocentes pero que son muy difíciles de resolver, y los matemáticos no pueden resistir el desafío.

¿Qué utilidad tiene eso? Ninguna; pero eso precisamente parece aumentar el interés.

¿Qué es el polvo cósmico y de dónde viene?

Según las teorías astronómicas actuales, las galaxias fueron en origen grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos y condensándose en estrellas. En algunas regiones donde la formación de estrellas fue muy activa, casi todoel polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedó en el espacio intermedio. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.

Dicho proceso fue mucho menos eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en números mucho menores y sobró mucho polvo y mucho gas. Nosotros, los habitantes de la Tierra, nos encontramos en los brazos espirales de nuestra galaxia y vemos las manchas oscuras que proyectan las nubes de polvo contra el resplandor de la Vía Láctea. El centro de nuestra propia galaxia queda completamente oscurecido por tales nubes.

El material de que está formado el Universo consiste en su mayor parte en hidrógeno y helio. Los átomos de helio no tienen ninguna tendencia a juntarse unos con otros. Los de hidrógeno sí, pero sólo en parejas, formando moléculas de hidrógeno (H2). Quiere decirse que la mayor parte del material que flota entre las estrellas consiste en pequeños átomos de helio o en pequeños átomos y moléculas de hidrógeno. Todo ello constituye el gas interestelar, que forma la mayor parte de la materia entre las estrellas.

El polvo interestelar (o polvo cósmico) que se halla presente en cantidades mucho más pequeñas, se compone de partículas diminutas, pero mucho más grandes que átomos o moléculas, y por tanto deben contener átomos que no son ni de hidrógeno ni de helio. El tipo de átomo más común en el Universo, después del hidrógeno y del helio, es el oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos oxhidrilo (OH) y moléculas de agua (H2O), que tienen una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren en el camino, de forma que poco a poco se van constituyendo pequeñísimas partículas compuestas por millones y millones de tales moléculas. Los grupos oxhidrilo y las moléculas de agua pueden llegar a constituir una parte importante del polvo cósmico.

Fue en 1965 cuando se detectó por primera vez grupos oxhidrilo en el espacio y se comenzó a estudiar su distribución. Desde entonces se ha informado también de la existencia de moléculas más complejas, que contienen átomos de carbono así como de hidrógeno y oxígeno. El polvo cósmico tiene que contener también agrupaciones atómicas formadas por átomos aún menos comunes que los de hidrógeno, oxígeno y carbono. En el espacio interestelar se han detectado átomos de calcio, sodio, potasio y hierro, observando la luz que esos átomos absorben.

Dentro de nuestro sistema solar hay un material parecido, aportado quizás por los cometas. Fuera de los límites visibles del sistema solar existe una capa con gran número de cometas, y algunos de ellos se precipitan hacia el Sol (acaso por los efectos gravitatorios de las estrellas cercanas). Los cometas son conglomerados sueltos de diminutos fragmentos sólidos de metal y roca, unidos por una mezcla de hielo, metano y amoníaco congelados y otros materiales parecidos. Cada vez que un cometa se aproxima al Sol, se evapora parte de su materia, liberando diminutas partículas sólidas que se esparcen por el espacio en forma de larga cola. En última instancia el cometa se desintegra por completo.

A lo largo de la historia del sistema solar se han desintegrado innumerables cometas y han llenado de polvo el espacio interior del sistema. La Tierra recoge cada día miles de millones de estas partículas de polvo («micrometeoroides»). Los científicos espaciales se interesan por ellas por diversas razones; una de ellas es que los micrometeoroides de mayor tamaño podrían suponer un peligro para los futuros astronautas y colonizadores de la Luna...y después, mucho después, Marte.

Un centímetro cúbico de una estrella de neutrones pesa miles de millones de toneladas

Un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos. De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0,076 gramos por centímetro cúbico. El más denso es un metal raro, el osmio, con una densidad de 22,48 gramos por centímetro cúbico.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas. Pero los átomos no son macizos. El físico neozelandés Ernest Rutherford demostró ya en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99,9 por 100 de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-13 centímetros (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta 1/100.000 de su tamaño anterior. De modo análogo, sí se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13,7 kilómetros de diámetro. Y si pudiéramos convertir toda la materia conocida del Universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de millones de kilómetros de diámetro, que cabría cómodamente dentro del cinturón de asteroides del sistema solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas. Hay estrellas que se componen casi por entero de tales átomos destrozados. La compañera de la estrella Sirio es una «enana blanca» no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Todos los protones tienen cargas eléctricas positivas y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga y en condiciones adecuadas es posible empaquetar un sinfín de ellos para formar una «estrella de neutrones». Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería 1/100.000 del actual y su volumen (1/100.000)3 ó 1/1.000.000.000.000.000 (una milbillónésima) del actual. Su densidad sería por tanto 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1,4 gramos por centímetro cúbico. Si fuese una estrella de neutrones, su densidad sería de 1.400.000.000.000.000 gramos por centímetro cúbico. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones) de toneladas.

¿Qué temperatura puede alcanzar una estrella?

Depende de la estrella y de qué parte de la estrella consideremos. Más del 99 por 100 de las estrellas que podemos detectar pertenecen -como nuestro Sol- a una clasificación llamada «secuencia principal», y al hablar de la temperatura de una estrella queremos decir, por lo general, la temperatura de su superficie. Empecemos por aquí.

Toda estrella tiene una tendencia a «colapsar» (derrumbarse hacia el interior) bajo su propia atracción gravitatoria, pero a medida que lo hace aumenta la temperatura en su interior. Y al calentarse el interior, la estrella tiende a expandirse. Al final se establece el equilibrio y la estrella alcanza un cierto tamaño fijo. Cuanto mayor es la masa de la estrella, mayor tiene que ser la temperatura interna para contrarrestar esa tendencia al colapso; y mayor también, por consiguiente, la temperatura superficial.

El Sol, que es una estrella de tamaño medio, tiene una temperatura superficial de 6.000º C. Las estrellas de masa inferior tienen temperaturas superficiales más bajas, algunas de sólo 2.500º C. Las estrellas de masa superior tienen temperaturas más altas: 10.000º C, 20.000º C y más. Las estrellas de mayor masa, y por tanto las más calientes y más brillantes, tienen una temperatura superficial constante de 50.000º C como mínimo, y quizá más. La temperatura superficial constante más alta posible de una estrella de la secuencia principal es 80.000º C.

¿Por qué no más? ¿Y si consideramos estrellas de masa cada vez mayor? Si una estrella ordinaria adquiere una masa tal que su temperatura superficial supera los 80.000º C, las altísimas temperaturas del interior producirán una explosión. En momentos determinados es posible que se alcancen temperaturas superiores, pero una vez pasada la explosión quedará atrás una estrella más pequeña y más fría que antes. La superficie, sin embargo, no es la parte más caliente de una estrella. El calor de la superficie se transmite hacia afuera, a la delgada atmósfera (o «corona») que rodea a la estrella. La cantidad total de calor no es mucha, pero como los átomos son muy escasos en la corona (comparados con los que hay en la estrella misma), cada uno de ellos recibe una cuantiosa ración.

Lo que mide la temperatura es la energía térmica por átomo, y por esa razón la corona solar tiene una temperatura de 1.000.000º C aproximadamente. También el interior de una estrella es mucho más caliente que la superficie. Y tiene que ser así porque si no no podría aguantar las capas exteriores de la estrella contra la enorme atracción centrípeta de la gravedad. La temperatura del núcleo interior del Sol viene a ser de unos 15.000.000º C. Una estrella de masa mayor que la del Sol tendrá naturalmente una temperatura nuclear y una temperatura superficial más altas. Por otro lado, para una masa dada las estrellas tienden a hacerse más calientes en su núcleo interior a medida que envejecen. Algunos astrónomos han intentado calcular la temperatura que puede alcanzar el núcleo interior antes de que la estrella se desintegre. Hay estimaciones que dan una temperatura máxima de 6.000.000.000º C.

¿Y qué ocurre con los objetos que no se hallan en la secuencia principal? En particular, ¿qué decir acerca de los objetos descubiertos recientemente, en los años sesenta? Tenemos los pulsares, que son «estrellas de neutrones» increíblemente densas, con toda la masa de una estrella ordinaria empaquetada en una esfera de un par de decenas de kilómetros de diámetro. La temperatura de su interior ¿no podría sobrepasar ese «máximo» de los seis mil millones de grados? Y también están los quasares, que según algunos son un millón de estrellas ordinarias, o más, colapsadas todas en una ¿Qué decir de la temperatura de su núcleo interior?

¿Hasta dónde puede llegar el proceso de fusión dentro de una estrella?

Cuando un número determinado de protones y neutrones se juntan para formar un núcleo atómico, la combinación resultante es más estable y contiene menos masa que esos mismos protones y neutrones por separado. Al formarse la combinación, el exceso de masa se convierte en energía y se dispersa por radiación.

Mil toneladas de hidrógeno, cuyos núcleos están constituidos por un solo protón, se convierten en 993 toneladas de helio, cuyos núcleos constan de dos protones y dos neutrones. Las siete toneladas restantes de masa se emiten en forma de energía.

Las estrellas como nuestro Sol radian energía formada de esta manera. El Sol convierte unas 654.600.000 toneladas de hidrógeno en algo menos de 650.000.000 toneladas de helio por segundo. Pierde por tanto 4.600.000 toneladas de masa cada segundo. Pero incluso a este ritmo tan tremendo, el Sol contiene suficiente hidrógeno para mantenerse todavía activo durante miles de millones de años.

Ahora bien, llegará el día en que las reservas de hidrógeno del Sol lleguen a agotarse. ¿Significa eso que el proceso de fusión se parará y que el Sol se enfriará? No del todo. Los núcleos de helio no representan el empaquetamiento más económico de los protones y neutrones. Los núcleos de helio se pueden fusionar en núcleos aún más complicados, tan complicados como los del hierro. De este modo se seguirá emitiendo energía. Pero tampoco mucha más. Las 1.000 toneladas de hidrógeno que, según hemos dicho, se fusionan en 993 toneladas de helio se pueden fusionar luego en 991,5 toneladas de hierro. Al pasar de hidrógeno a helio se convierten en energía siete toneladas de masa, pero sólo una y media al pasar de helio a hierro.

Y al llegar al hierro entramos en una vía muerta. Los protones y neutrones del núcleo de hierro están empaquetados con una estabilidad máxima. Cualquier cambio que se produzca en el hierro, ya sea en la dirección de átomos más simples o de átomos más complejos, no emite energía sino que la absorbe. Podemos decir por tanto que cuando la estrella alcanza la fase del helio ha emitido ya unas cuatro quintas partes de toda la energía de fusión disponible; al pasar al hierro emite la quinta parte restante y allí se acaba la historia.

Pero ¿qué sucede después?

Al pasar a la etapa de fusión posterior al helio el núcleo de la estrella se torna mucho más caliente. Al llegar a la etapa del hierro se vuelve lo bastante caliente como para iniciar reacciones nucleares que producen cantidades enormes de neutrinos. El material estelar no absorbe los neutrinos: tan pronto como se forman salen disparados a la velocidad de la luz, llevándose energía consigo. El núcleo de la estrella pierde energía, se enfría de forma bastante brusca y la estrella se convierte por colapso en una enana blanca.

En el curso de este colapso, las capas exteriores, que aún poseen átomos menos complicados que los de hierro, se fusionan todos a un tiempo, explotando en una «nova». La energía resultante forma átomos más complicados que los de hierro, incluso de uranio y más complejos aún. Los restos de tales novas, que contienen átomos pesados, se mezclan con el gas interestelar. Las estrellas formadas a partir de ese gas, llamadas «estrellas de la segunda generación», contienen pequeñas cantidades de átomos pesados que jamás podrían haber conseguido a través del proceso de fusión ordinario. El Sol es una estrella de la segunda generación.  Y por eso, hay oro y uranio en la Tierra.

 

                                                                                                                                            © 2023 JAVIER DE LUCAS