CAOS DETERMINISTA

 

LA PERCEPCION

Al ver, oír y escuchar, nuestro cerebro desencadena en fracción de segundos un mecanismo complejo por el cual reconocemos el estímulo que lo provoca. La percepción no puede comprenderse examinando únicamente las propiedades microscópicas de las neuronas en forma individual, se debe entender que se trata de la acción cooperativa de millones de neuronas que están localizadas en diferentes puntos de la corteza cerebral. El caos determinista está presente en esos mecanismos complejos, ya que representa una forma de entender cómo un grupo de neuronas cambia abruptamente la actividad que realiza al menor estímulo. Se adentra en el terreno de la especulación y propone que gracias al caos es posible que el cerebro sea flexible en su respuesta al mundo exterior y más aún, que sea capaz de generar nuevos modelos de actividad.

Cuando se huele un aroma las moléculas que lo provocan son capturadas por una pequeña porción del inmenso número de receptores neuronales que se encuentran ubicados en la nariz. De alguna manera, cada receptor está especializado para responder a un tipo de aroma en particular. El estímulo genera en las células una serie de pulsos que se propaga vía los axones hasta el llamado bulbo olfatorio; aquí se analizan los estímulos recibidos y se transcriben en un nuevo mensaje que es transmitido por los axones hacia la corteza olfatoria; ésta se encarga de enviarlo a muchas partes del cerebro que mezclan dichas señales con las provenientes de otros sistemas sensoriales. El resultado de todo este proceso es la percepción de un aroma que es único para cada individuo. Experimentalmente, W. Freeman, profesor de neurobiología en la Universidad de California, y sus colaboradores, entrenan a un grupo de animales para que respondan al estimulo de varios aromas, en cada caso se enseña al animal a que se comporte de una manera particular ante un aroma en particular. En «recompensa» al aprendizaje se le colocan 65 electrodos en gran parte de la superficie bulbar, con los que pueden obtener simultáneamente otros tantos electroencefalogramas (EEG) que miden la actividad neuronal. El registro de los EEG para la región del bulbo olfatorio y la corteza olfatoria muestra ondas de baja frecuencia que se ven interrumpidas por oscilaciones de gran amplitud y alta frecuencia cuando el animal percibe el olor. Estas oscilaciones duran una fracción de segundo en el intervalo entre la inhalación y exhalación.

Como dato curioso debemos apuntar que este mismo modelo de oscilaciones se encuentra en la reacción de Belousov-Shabotinsky cuando la experiencia se realiza en un sistema abierto. Estos sobresaltos oscilatorios representan una actividad cooperativa del sistema neuronal del cual se puede obtener un mapa donde se grafican las amplitudes por medio de cada uno de los electrodos. El mapa revela un diagrama de contornos con elevaciones de valles y montañas que se repite cuando el animal vuelve a inhalar un aroma en particular. Hay muchas razones para creer que la actividad del cerebro durante los sobresaltos, y en los espacios de tiempo entre ellos, es caótica y no simplemente azarosa. La diferencia entre estos dos estados es similar a la que existe entre la gente que transita por una estación de correspondencia del Metro y una multitud aterrorizada.

En el primer caso, aunque la gente pasa corriendo para tomar un determinado tren, en el proceso hay un orden oculto y el flujo de movimiento puede cambiarse si se ordena por el altavoz un cambio en la dirección de los trenes. En el caso de la multitud en pánico un anuncio no cambiará nada la situación y la cooperación no hará acto de presencia. Entre las aparentes evidencias de que el fenómeno es caótico podemos mencionar el que el conjunto neuronal del bulbo y la corteza pasan al unísono e instantáneamente de periodos de sobresaltos a otros de aparente calma, para reincidir de nuevo en las oscilaciones, comportamiento que es propio de los estados caóticos que en física llamamos transiciones de fase, y bifurcaciones en matemáticas. Más evidencia se suma a los hechos cuando los autores desarrollan y aplican un modelo computacional del sistema olfatorio en su totalidad.

Mediante esta herramienta se simula la actividad del sistema resolviendo un conjunto de ecuaciones diferenciales que «describen» la dinámica de las neuronas. El modelo, ante el estímulo de un simple pulso (equivalente a la excitación de unas cuantas neuronas) es capaz de reproducir una actividad semejante a la que se observa en los EEG. A partir de esta simulación se representan los resultados de la actividad mediante un diagrama de fases en donde se grafican las amplitudes en función del tiempo (en este caso a cada milésima de segundo de intervalo). El resultado es un atractor extraño. Los científicos piensan que el caos en el cerebro es consecuencia de que dos áreas, en este caso el bulbo y la corteza, se excitan una a otra pero no son capaces de generar una frecuencia común de oscilación. La competencia entre las partes incrementa la sensibilidad e inestabilidad del sistema, que contribuyen al caos, afirmación que se confirma cuando se interrumpe la conexión entre el bulbo y la corteza, ya que el caos desaparece.

Caos y funcionalidad

Entre los científicos, en particular en aquellos dedicados al estudio de la evolución, existen dos posturas respecto al papel que pueden desempeñar las dinámicas caóticas en los seres vivos. Hay quienes categóricamente afirman que éstas no existen en las poblaciones reales y añaden que de existir fluctuaciones caóticas se crearía un riesgo intrínseco en la evolución que ocasionaría la extinción progresiva de dicha especie. M. Conrad, especialista en biología y las ciencias de la computación de la Universidad de Wayne, Estados Unidos, tiene una visión diferente. Hemos visto que muchos modelos dinámicos de los complejos sistemas biológicos llegan a ser caóticos si se escogen ciertos valores para los criterios que los controlan. Los resultados caóticos de estas ecuaciones son semejantes a los obtenidos en reacciones químicas inorgánicas como la de Belousov-Shabotinsky. ¿Cuál es entonces la función que tiene una dinámica caótica en un organismo vivo?

Conrad nos lo explica de la siguiente manera: la posibilidad de interpretar el caos biológico en términos funcionales está basada en el hecho de que cualquier sistema de este tipo debe ingeniárselas para permanecer en el juego de la vida. Para ello es necesario que la dinámica de las partes que lo conforman sea consistente con la dinámica del conjunto y ésta a su vez sea consistente con sus partes. El más importante mecanismo para alcanzar tal autoconsistencia es la selección natural. Si la dinámica de un organismo individual no es congruente con la estabilidad del ecosistema como un todo, será inevitable que la selección natural lo elimine. En su evolución hacia estados que le permitan seguir funcionando, Conrad nos dice cuáles son las posibles funciones que puede tener el caos; revisémoslas brevemente:

1) Búsqueda de nuevos procesos. En esta categoría se genera y se ponen a prueba un conjunto de posibilidades nuevas. Entre ellas, la más importante sería la diversificación genética a través de la mutación y otras operaciones genéticas. Con ello se crearían nuevos genotipos sobre los cuales actuaría la selección natural. Aún no hay evidencia directa de que las dinámicas caóticas actúen directamente en el nivel genético.

2) Defensa. Los mecanismos caóticos pueden ser empleados para evadir a los predadores. Por ejemplo, un animal que se mueve de manera azarosa (por ejemplo mariposa) es más difícil de atrapar que aquél que posee movimientos predecibles. En este caso se podría pensar que el caos está instalado en el nivel neuronal.

3) Previene al sistema biológico de la «burocracia». En ausencia del caos, la actividad del sistema se anquilosaría de tal manera que le sería difícil responder en forma dinámica a un estímulo que la acecha. El éxito de la adaptabilidad será más eficiente en un sistema cuyas partes están más descentralizadas, más independientes. Piense el lector en el sistema inmunológico; la gran diversidad de moléculas de inmunoglobulina hace posible que el organismo pueda luchar con un mundo microbiano muy diverso.

Anticaos y autoorganización

El descubrimiento del caos determinista en muchas áreas de la ciencia y en especial aquellas relacionadas con la química de los seres vivos, ha motivado en los científicos nuevas reflexiones que intentaré resumir en este apartado. Es obvio que todos los sistemas vivientes son estructuras muy bien ordenadas que permanecen en el juego de la vida gracias al equilibrio preciso entre la actividad química y el comportamiento. Hay quienes piensan, como S. Kauffman, profesor de bioquímica y biofisica de la Universidad de Pennsylvania, que es posible que el orden biológico sea un reflejo parcial del orden espontáneo sobre el cual actúa la selección natural. Esta moldea la coherencia propia del desarrollo biológico, y es la evolución la que aporta la capacidad para cambiar y adaptarse. Una nueva vertiente, tentativa e incompleta, nos dice Kauffman, emerge en ese sentido: la evolución se comprende como la sumatoria de la selección y la autoorganización, esta última es una propiedad innata de algunos sistemas complejos. Los sistemas complejos presentan fenómenos como el caos determinista, pero también, dice el autor, podemos pensar en el anticaos, un sistema desordenado que «cristaliza» en orden.

¿Cómo funciona la lógica y estructura de un sistema regulatorio, como sería el caso del genoma de un ser humano con capacidad para formar 100 000 diferentes proteínas? Para estudiar el problema se crean modelos matemáticos que describen cómo los elementos individuales del sistema se conectan y regulan mutuamente mediante funciones lógicas. Cada combinación de funciones que se genera constituye un nuevo estado del sistema y la sucesión de estados es la trayectoria que sigue el sistema. El modelo presupone que existe un número finito de estados y que a la larga el sistema volverá a un estado anterior: esto se llama un atractor dinámico. Mediante la simulación se ha demostrado que para un sistema constituido por N elementos, en el que cada uno puede ser modificado en su comportamiento por tres posibles señales, S, el nuevo estado del sistema tiene un comportamiento caótico, hay sensibilidad a las condiciones iniciales, y si el número de elementos crece el tamaño del ciclo también, pero exponencialmente.

Sin embargo, cuando S=2, las propiedades caóticas desaparecen abruptamente y el sistema exhibe un orden colectivo espontáneo y los atractores resisten, por así decirlo, a mínimas perturbaciones. ¿Por qué un sistema que tiene únicamente dos señales por cada elemento exhibe tal orden? La respuesta no es fácil; los especialistas que estudian los mecanismos de transmisión de señales en un sistema conectado entre si nos indican que en el vasto enrejado interconectado se forman cúmulos de elementos que se encierran en si mismos como islas que permanecen funcionando en forma aislada y no pueden propagarse; el sistema en su totalidad se ordena porque los cambios en su comportamiento son pequeños y aislados.

Si cada uno de los 100 000 elementos que posee el genoma humano recibiera dos señales, potencialmente podría asumir 1030000 diferentes estados. Sin embargo, el sistema asume un orden tal que el número de ciclos calculados no pasa de 370 estados. Si uno supone que cada tipo de célula es en sí un atractor, debería ser posible predecir cuántos tipos de células aparecen en el organismo. El número de atractores es aproximadamente igual a la raíz cuadrada del número de elementos en el sistema, por tanto, el número de tipos de células debería ser casi igual a la raíz cuadrada del número de genes. Si se asume que ese número es proporcional a la cantidad de ADN en una célula, entonces los humanos tendrían aproximadamente 100 000 genes y 370 variedades de células.

La cuenta más reciente en los humanos distingue 254 tipos, la predicción del modelo no está muy alejada de la realidad. Otra predicción de este tipo de modelos se refiere a la estabilidad de los diferentes tipos de células. Si cada célula es un atractor, entonces no puede ser fácilmente alterada por cualquier perturbación, ya que su estabilidad es una propiedad que emerge el sistema regulatorio que tienen los genes, hipótesis de la evolución que está gobernada por sistemas regulatorios que funcionan en el límite entre el orden y el caos.  

Epílogo

EL CAOS determinista aporta una visión contraria a la que se tuvo durante mucho tiempo en el sentido de que un sistema se podía conocer si se estudiaban por separado las partes que lo constituyen. Con el caos se ha demostrado que un sistema puede exhibir un comportamiento muy complicado que emerge como consecuencia de la interacción no lineal de unos cuantos componentes del mismo. Por lo tanto, para que se presenten las oscilaciones y el caos, como también la posibilidad de tener varios estados estables, no se requieren complejos bloques de construcción. Hemos visto que ecuaciones matemáticas muy sencillas generan resultados en donde es imposible la predicción del valor, si hay un número de requisitos mínimos satisfechos. Tal parece que este comportamiento también aparece en la química. Antes de que se comprobara la existencia de las oscilaciones en la química, se invocó la segunda ley de la termodinámica en forma incorrecta y se esgrimió como argumento para comprobar la inexistencia de las oscilaciones. Sin embargo, las reacciones químicas no hicieron caso de tales ideas y siguieron oscilando, por lo que los científicos tuvieron que pensar con más cuidado sobre estos fenómenos.

Hemos visto ejemplos experimentales de oscilaciones complejas y rutas hacia el caos en casi todo el rango de sistemas químicos: sistemas homogéneos en fase gaseosa, en solución y reacciones sólido-gas, también en procesos heterogéneos que comprenden interfaces gas-sólido y sistemas bioquímicos; en todos ellos se apuntan aspectos cualitativos muy similares. Muchos investigadores, reacios al inicio a aceptar los hechos experimentales obtenidos en muchos laboratorios, se han convencido de que a pesar de la incertidumbre que existe para fijar con precisión las condiciones experimentales y la adquisición de datos, el caos está presente en forma potencial, aun en las reacciones clásicas descritas en los libros de texto.

Tal vez lo que resulta del aprendizaje del caos en la química (y en muchas otras disciplinas) es que aun cuando seamos capaces de obtener las leyes cinéticas que gobiernan la reacción a partir de un mecanismo detallado del cual conocemos todos los intermediarios, la predicción siempre será incierta y el problema no se solucionará gastando más dinero en costosas computadoras que simulen los datos. La única alternativa sería determinar todas las concentraciones iniciales con una precisión infinitamente exacta, pero eso es imposible. Pero en el fondo no estamos del todo perdidos; aunque renunciemos a las predicciones a largo término, la teoría del caos puede ayudarnos a evaluar qué tan predecible es un sistema, en qué rango de tiempo podemos hacer predicciones y cuáles son las desviaciones esperadas alrededor de cierto valor promedio, o cuál será el comportamiento promedio del sistema para cierto periodo; todas éstas son incógnitas que podemos evaluar.

Asimismo, es posible aprender a dirigir un sistema no en forma directa, sino utilizando sus facultades de autoorganización y con el ajuste de criterios adecuados de control. La naturaleza, sin embargo, emplea el caos en forma constructiva: al amplificar las pequeñas fluctuaciones provee sistemas que permiten el acceso a la creatividad. La evolución biológica demanda una variabilidad genética, el caos puede proporcionar un medio para estructurar los cambios azarosos, ofreciendo la posibilidad de poner la diversificación bajo el control de la evolución. Aún más, podemos especular que la creatividad innata en la que viejas y nuevas ideas se conectan debe tener un trasfondo caótico que permite amplificar las fluctuaciones y moldearlas para dar estados mentales macroscópicamente coherentes, los cuales se experimentan como nuevos pensamientos.

El caos provee un mecanismo que nos permite tener un libre albedrío en un mundo gobernado por leyes deterministas.

                                 

                                                                                                                        © 2025 JAVIER DE LUCAS