El espectroscopio ha mostrado, al analizar la luz de las estrellas, que todos estos mundos celestes están constituidos, aunque en distintas proporciones, sólo de elementos conocidos en la Tierra y catalogados en la clásica serie periódica de Mendelejeff.

Hace años, pareció haberse descubierto un extraño en el Sol, y las campanas de los laboratorios llamaron a la alerta. Al recién observado se le llamó Helio (sol, en griego). Poco después, el orden fue restablecido, pues pudo comprobarse que se trataba de una deficiente observación; el helio existía también en nuestra morada, aunque en pequeñas cantidades, y tenía su sitio reservado en el segundo casillero de la serie periódica, lo cual constituía una nueva confirmación de la ordenación matemática del cosmos.

Otros dos elementos fueron el coronio y el nebulio. Pudo comprobarse que el primero estaba formado por átomos de calcio totalmente ionizados, existentes en la corona del Sol, y que al segundo lo componían átomos de nuestro tan conocido oxígeno sometidos a enormes temperaturas y a un vacío imposible de ser producido en nuestros laboratorios.

Desde aquel entonces, el conocimiento de la materia y de las micropartículas que la componen ha avanzado notablemente. Los átomos de los diversos elementos químicos simples no tienen siempre y rigurosamente la misma estructura; en ciertas condiciones el número de protones, neutrones y electrones, para nombrar sólo las partículas más representativas, varía en pequeñísimas proporciones, pero manteniendo inalterables las características químicas y físicas del elemento considerado. Se dice que esos átomos son isótopo del mismo elemento. Es fácil comprender que el peso atómico del elemento incluido en la serie de Mendelejeff es el del isótopo estable, ya que los otro no lo son y, en general, viven, por así decirlo, en un permanente cambio de su peso atómico. Por otra parte, más allá del último de los cuerpos simple y estables registrados en la ordenación periódica, el uranio 92, se han descubierto o creado otros llamados transuránicos, todos ellos inestables .

Además de establecer esta igualdad o semejanza en la materia prima del universo, se han medido distancias, analizado tiempos, velocidades, temperaturas, presiones, masas, densidades y otras características que muestran la vigencia, en el ámbito cósmico, de las mismas leyes físicas y químicas que nosotros conocemos.

En base a esas condiciones descritas y surgiendo de grandes acumulaciones de hidrógeno, millones de veces más extendida que nuestro Sol, se ha calculado que cada año nacen unas diez estrellas en nuestra galaxia. La fuerza de gravedad acerca a los átomos de hidrógeno hacia el centro de acumulación, haciéndolo más y más denso. De la misma manera que una manzana que soltamos aumenta su velocidad al acercarse al suelo, los átomos de hidrógeno se aceleran cada vez más a medida que se acercan, y chocan con mayor violencia. Llega un punto en que sus velocidades son tan grandes que el protón de un núcleo de hidrógeno logra vencer la repulsión eléctrica del núcleo que impacta, fusionándose con él y otros más hasta formar un núcleo estable de helio. La fusión es posible gracias a la fuerza fuerte que comienza a actuar cuando los protones están muy cerca. El núcleo de helio tiene menos masa que la suma de los dos protones y dos neutrones que lo forman; la diferencia se manifiesta en forma de velocidad de lo que queda al final, o en otras palabras, de temperatura y presión del gas en el interior de la estrella en formación. La fusión requiere unos trece millones de grados de temperatura a una densidad cien veces la del agua, ambas producidas por la interacción gravitatoria, y sostenida constantemente por la acción simultánea de la fuerza gravitacional y las mismas reacciones nucleares. En ese momento está naciendo, probablemente, una estrella parecida al Sol.

Cuando levantamos nuestras miradas hacia el cielo en esas noches que llamamos estrelladas, parece que estuviéramos observando una cantidad enorme de estrellas con nuestros ojos, pero, de hecho, éstos únicamente tienen capacidad para ver, al mismo tiempo, unas tres mil estrellas. No obstante, podemos ver millares y millares de estrellas cuando volvemos nuestra vista hacia la Vía Láctea o cuando miramos la luz de la galaxia Andrómeda con millones y millones de estrellas alojadas en ella.

Para nosotros, el Sol es nuestra estrella especial, casi única, pero no es más que una estrella común dentro del promedio de todas las que hemos sido capaces de distinguir en el universo. Hay estrellas lejanas más nítidas, más tímidas, más calientes y más frías que el Sol, pero todas las estrellas que hemos podido ver y vemos son objetos semejantes a éste.

La mayoría de las estrellas se encuentran alojadas en el cosmos en agrupaciones que hemos llamado cúmulos. Estos cúmulos se dividen en abiertos y globulares. Los cúmulos abiertos contienen un número pequeño de estrellas jóvenes; los cúmulos globulares son de constitución mucho más vieja y contienen un mayor número de estrellas.

Nuestro Sol, como cualquier otra estrella, es una gran pelota de gas agrupado por la propia gravedad. Su brillantez luminosa es el resultado de las profundas reacciones nucleares que se da en su interior. Estas reacciones transforman elementos livianos en unos más pesados y liberan energía durante ese proceso. La efusión de esa energía proveniente desde las regiones interiores de la estrella es la que provee la presión necesaria para equilibrarla frente a la fuerza de gravedad que permanentemente trata de desplomarla hacia su propio centro.

Una estrella desde su nacimiento tiene diferentes fases de evolución. En sus primeras etapas como embrión es rodeada por los restos de la nube de gas desde donde se formó. Esa nube de gas es gradualmente disipada por la radiación que emana de la estrella, posiblemente quedando atrás un sistema de objetos menores como planetas, etc.

Pasada la etapa de la infancia, una estrella entra a su madurez, que se caracteriza por un período largo de estabilidad en la cual el hidrógeno que almacena en su centro se va convirtiendo en helio liberando enormes cantidades de energía. A esa etapa de estabilidad y madurez de la estrella se le llama «secuencia principal» que se refiere a una región diagonal en el diagrama de color-magnitud de Hertzprung-Russell que incluye al 90 por ciento de las estrellas. El parámetro principal para la ubicación de cada estrella en ese diagrama está dado por la masa.

Diagrama de Hertzsprung-Russell de las estrellas más cercanas y nítidas. El eje horizontal muestra la temperatura y tipo espectral desde las estrellas más calientes sobre la izquierda a las más frías sobre la derecha. El eje vertical muestra la luminosidad de las estrellas con rangos de 10.000 veces más brillantes que el Sol en la parte de arriba y las de menor brillo de hasta 1/10.000 en la parte de abajo.

Mientras más masiva es una estrella más rápido quema hidrógeno lo que la hace ser más nítida, más grande y más caliente. La transmutación rápida de hidrógeno en helio también implica un agotamiento del stock del primero más pronto en estrellas masivas que para las de menor tamaño. Para una estrella como el Sol su permanencia en la secuencia principal dura aproximadamente 10 mil millones de años; una estrella diez veces más masiva será 10.000 veces más nítida pero durará en la secuencia principal 100 millones de años. Una estrella con la décima parte de la masa del Sol tendrá un brillo de sólo la 1/10.000 del que tiene éste pero permanecerá en la secuencia principal por 1.000.000.000.000 de años.

Una estrella desde que está en embrión, sus características, su evolución, y su muerte y consecuencias cósmicas, siempre están dependiendo de magnitud de masa. Parte dependiendo del tamaño de la masa original de la nube interestelar con que todo empezó en la generación del astro. Si ésta era mayor en cien veces la del Sol, la densidad y atracción gravitacional llega a ser tan grande que la contracción continúa y continúa hasta que después de pasar diferentes etapas estelares se forma una estrella de neutrones o un agujero negro. Ahora, si esa masa no alcanza a una décima parte de la masa solar la fusión nunca se desata y lo que pudo ser estrella no se enciende jamás.

EVOLUCIÓN Y MUERTE DE LAS ESTRELLAS

Si de la masa interestelar se originó una estrella, entonces es factible hablar de ciclos de la vida de ese astro; podemos distinguir una infancia, madurez y final... Mientras vive, se mantiene encendido transformando continuamente hidrógeno en helio. La presión expansiva que esto produce mantiene a la estrella dentro de un volumen constante como vemos al Sol, a pesar de la inmensa atracción gravitacional que tiende a achicarla cada vez más. Es un equilibrio que se armoniza entre la gravedad que presiona hacia adentro y las presiones que se generan hacia afuera producidas por las reacciones nucleares.

Pero no todas las estrellas evolucionan del mismo modo. Una vez más es la masa de la estrella la determinante en los cambios que éstas experimentan en sus diferentes etapas de vida.

ESTRELLAS DE MASA INTERMEDIA

El Sol se encuentra dentro de esta división. Son estrellas que durante la fase de la secuencia principal transmutan hidrógeno en helio en su núcleo central, pero el primero, en millones de años, se va agotando hasta llegar a un instante en que las fusiones son insuficientes para generar las presiones necesarias para equilibrar la gravedad. Así, el centro de la estrella se empieza a contraer hasta calentarse lo suficiente como para que el helio entre en fusión y se vaya convirtiendo en carbono. El remanente de hidrógeno se aloja como una cáscara quemándose y transmutándose en helio y las capas exteriores de la estrella se ven obligadas a expandirse. Esa expansión convierte a la estrella en una «gigante roja» más brillante y fría que en su etapa en la secuencia principal.

 

Durante la fase de gigante roja, una estrella pierde muchas de sus capas exteriores las cuales son eyectadas hacia el espacio interestelar por la radiación que emana desde el centro de ella. Eventualmente, las estrellas más masivas de este tipo logran encender el carbono para que se transmute en elementos más pesados, pero la generalidad es que se apague todo tipo de fusión y la estrella se derrumbe hacia su interior debido a la incontrarrestabilidad de que empiezan a gozar las presiones gravitatorias transformándose la estrella en una «enana blanca» degenerada.

ESTRELLAS DE MASA PEQUEÑA

Son una raza de estrella de larga vida. Nuestros conocimientos sobre la evolución de ellas es puramente teórico, ya que su etapa en la secuencia principal tiene una duración mayor que la actual edad del universo; en consecuencia, como es obvio, nunca se ha podido observar el comportamiento evolutivo de estrellas con esta magnitud de masa. Los astrofísicos consideran que deberían tener una evolución muy semejante a las estrellas de masa intermedia, excepto que nunca podrían alcanzar en su interior una temperatura suficiente como para que el helio se encienda y entre en fusión. Los remanentes de hidrógeno encendido también se alojarían en una cáscara hasta agotarse totalmente. Entonces la estrella se enfriaría acabando después de unos 1.000.000.000.000 de años en una «enana negra».

ESTRELLAS DE MASA MAYOR

Son estrellas en rápida combustión. Las estrellas calientes, brillantes v azules de al menos seis masas solares trazan una rápida y vistosa carrera a través del tiempo. La corta extensión de sus vidas hace extrañas a las grandes estrellas, pues sólo aquellas formadas en los últimos 30 millones de años -y no todas ellas- existen todavía. Su juventud extrema también significa que todavía han de hallarse estrellas masivas cerca de las estrellas con las que se han formado. Las estrellas de poca masa tienen tiempo de separarse de su cohorte original, pero las estrellas muy masivas no viven lo suficiente para hacer otro tanto, permaneciendo en las llamadas asociaciones que están cubiertas de pedazos sueltos de gas y polvo.

 

Al principio pasan rápidamente a través de casi las mismas fases que una estrella de masa intermedia, pero las estrellas masivas tienen núcleos tan calientes que transmutan hidrógeno en helio de una manera diferente, usando restos de carbono, nitrógeno y oxígeno. Una vez que la estrella haya agotado el hidrógeno en el núcleo y alojado el remanente de éste como cáscaras, entra a una fase que se conoce como de «súper gigante roja». Después de que sus núcleos se hayan convertido en helio, la enorme gravedad de las estrellas permite continuar la fusión, convirtiendo helio en carbono, carbono en neón, neón en oxígeno, oxígeno en silicio, y finalmente silicio en hierro . Llegado a este punto, debido a que el hierro no se fusiona, el núcleo de una estrella masiva se colapsa rápidamente, hasta un «agujero negro» o bien resultando en una explosión de «supernova» y convirtiéndose en una «estrella de neutrones».

 

Como todo lo que conocemos en la vida, todo al final termina, como hemos visto las estrellas no están ajeno a ello. Cuando ya ha consumido un diez por ciento del hidrógeno, la estrella empieza a mostrar los primeros signos de vejez. Su centro se empieza a contraer y su exterior, a expandir. Con lo último, el gas se enfría, pierde algo de su brillo y la estrella se convierte en una gigante roja (recordemos que para estos casos el rojo es sinónimo de cuerpo frío). Con la comprensión, el centro se hace más denso y los núcleos de helio ahora se funden formando carbono y otros núcleos más pesados, hasta llegar al hierro con sus veintiséis protones y que no cambia. Se ha llegado al final del drama. En la agonía se observa que ya no hay entonces reacciones ni liberación de energía, y nada compensa el empuje gravitacional que evite la contracción final.

Si el cadáver estelar tiene menos que 1,44 veces la masa del Sol, los restos de hierro continúan contrayéndose hasta enfriarse y quedar inerte rondando por el espacio. A este fósil lo conocemos como estrellas enanas blancas. Cuando ésta ya ha consumido todo el resto de combustible nuclear remanente del acto final, pasa a ser un cuerpo invisible en el espacio, una enana negra.

Ahora, si los restos después del desplome como gigante roja supera 1,44 veces la masa del Sol, la contracción continúa más allá de la enana blanca gracias a la gravedad, en un proceso acelerado que termina desarrollando una monumental explosión, la supernova. Enormes cantidades de materia incluidos elementos pesados que se formaron en la etapa en que el centro de la estrella se contraía son eyectados hacia el espacio exterior.

Se piensa que los restos fósiles de una supernova es generalmente una estrella de neutrones. Un púlsar en el centro de la Nebulosa del Cangrejo hoy se identifica con el núcleo de la supernova de 1054. Pero algo más queda por relatar en la descripción del acto mortuorio de las estrellas gigantes. Si después de todo el drama aún persiste una masa de la estrella por sobre dos a tres veces la del Sol, la contracción continúa y continúa formándose ese sorprendente objeto que es el «agujero negro», del cual ni la luz escapa.

Podemos resumir que el destino final de una estrella se guía por lo que se llama límite de Chandrasekhar de 1,44 M (1,44 masas solares). Después de la fase de gigante roja, la mayoría de estrellas se habrán escogido por debajo de este límite, convirtiéndose en enanas blancas. Las estrellas que empiezan su vida con alrededor de seis veces la masa del Sol conservarán suficiente materia en su vejez para seguir por encima del límite divisorio. Aunque su destino aún está en discusión, los astrofísicos saben que al menos algunas de ellas, demasiado masivas para pasar tranquilamente su senilidad, mueren rápida y violentamente en espectaculares explosiones conocidas como supernovas.

¿Y qué pasará con nuestro Sol? En unos miles de millones de años más su cubierta gaseosa se empezará a expandir, hasta que los gases calientes nos envuelvan, mucho tiempo después que los hielos polares se derritieran y los océanos se evaporaren. En su camino hacia la gigante roja, mientras el centro del Sol se transforma en una probable enana blanca, la vida en el planeta, en su forma actual ya no será posible.

                                                                                                                          Javier de Lucas